

Development of a portable OSL reader for spaceflight activities

Eduardo G. Yukihara and Stephen. W.S. McKeever

Department of Physics, Oklahoma State University

TL = *thermally* stimulated luminescence

OSL = *optically* stimulated luminescence

The Pulsed OSL (POSL) Technique

Pulsed OSL (POSL)
Measures OSL
emission between
stimulation pulses,
not during the pulse.
Better separation
between the signal
and the stimulation
light.

Typical TL and OSL Signals

Typical TL and OSL Signals

Possibility of Re-estimation of doses

Can re-read the OSL signal, if the signal is strong enough. (No need to deplete the signal in order to measure it.)

Why develop OSL fro astronaut dosimetry?

- All-optical method lends itself to multiple configurations and devices
- High sensitivity
- Stable signal (no fading)
- Re-read of OSL signal (period dose plus total dose)
- Re-setting of signal by bleaching
- High reproducibility within a batch (e.g. LuxelTM)
- Thin dosimeters (e.g. LuxelTM) for ease of use
- Fast readout
- Low (electrical) power
- High reliability of components
- Various on-board readout configurations
- Can combine with TLD/PNTD badges, and readers

Space & Ground-Based Experiments

Ground-based Experiments

- HIMAC-NIRS
- ICCHIBAN 2nd, 4th, 6th
- Peletron-UNAM
 (low-E p, He, C, O)
- Loma Linda (proton ICCHIBAN)
- NSRL-BNL

Space-based Experiments

- STS several
- •Soyuz/ISS (MATROSHKA I & II)
- •Soyuz (*MESSAGE*; MOBILIZATION)
- •Soyuz/ISS (BRADOS)
- Antarctica Balloon flight (TRACER)

Multiple collaborators

- (1) OSL from Al_2O_3 shows sensitivity to HCP of LET > 10 keV/ μ m (up to 290MeV/n Xe; 1047 keV/ μ m)
- (2) Sensitivity & precision depend on method of OSL readout
- (3) Sensitivity & precision depend on material type (chip, Luxel)

- (4) Sensitivity decrease with LET due to loss of sensitivity at high doses
- (5) OSL decay rate depends on (a) dose, (b) LET

- (6) Possibility of LET information from OSL decay curves
- (a) Ratio of area to initial intensity
- (b) Ratio of decay constants

(7) Possibility of LET information from emission spectra

OSL from Al₂O₃:C: emission bands

POSL measurements

CW-OSL from Al₂O₃:C: dose dependence

CW-OSL from Al₂O₃:C: LET dependence

CW-OSL from Al₂O₃:C: relative efficiency

Closed symbols: UV Open symbols: F-center

(8) Possibility of extracting dose due to low LET from dose due to high LET

Dose distributions extracted from deconvolutions of OSL decay curves

Risoe TL/OSL reader

Experimental OSL readers

Experimental OSL readers

InLight[™] (Landauer Inc.)

MicroStar[™] (Landauer Inc.)

Current OSL applications

Personnel dosimetry of ionizing radiation (Landauer Inc.)

(Technology licensed from OSU)

60,000 costumers (1.4 million individuals)

Al₂O₃:C from Landauer Crystal Growth Division (Stillwater)

LuxelTM badge

Future projects: The Citizens' Dosimeter

- Project underway at the Environmental Measurements Laboratory (Gladys Klemic gladys.klemic@dhs.gov)
- Credit card format dosimeter
- Strategically placed card readers
- Combine existing technology in new design

Requirements

- •Sensitivity between 0.5mGy 10 Gy
- Readout in <3s
- •Signal loss <10% relative to previous readout

Future projects: The Citizens' Dosimeter

Objectives

- Design and build a functioning prototype OSL reader (light source, light transducer, associated electronics)
- Operational in a bench-top setting, but components chosen such that they could be incorporated into a rugged commercial version (that could be used in a sheltered outdoor environment).
- Design the coupling between a prototype card and the reader
- Design the prototype card

Mars Dating Instrument

Objectives

- Design and build a functioning prototype TL/OSL reader for luminescence dating of martian surface sediments.
- (light source, light transducer, associated electronics, radiation source)

Mars Dating Instrument

Space Dosimetry

Next step

- OSL personal dosimeter readout capability for longduration missions (ISS, Moon, Mars)
- Design and build a functioning prototype OSL reader for on-board use (light source, light transducer, associated electronics, software)
- Design an astronaut personal dosimeter badge including capability for PNTD and TLD
- Design interface to the reader

Space Dosimetry

Requirements

- Sensitivity < 0.01 mGy
- Days to years of accumulated dose (up to 3 year missions)
- Fast and easy readout
- Dosimeter easy to wear, use, handle, read
- Light-weight, low power, etc.

Space Dosimetry

Conclusions:

- Fabrication of a small OSL reader will happen in the next few years due to the convergence of interests in homeland security, planetary exploration, luminescence dating, and space dosimetry.
- All elements for the reader are available. There is no critical obstacle: OSL readout is already realized, electronics is feasible.

Thank you!