CPDS Instruments Aboard the ISS

K.T. Lee¹, J. Flanders², E. Semones², T. Shelfer², F. Riman³

(1) University of Houston, 4800 Calhoun Rd., Houston, TX 77204
(2) Lockheed Martin Space Operations, 1300 Hercules Suite 100, Houston, TX 77058
(3) Jacobs Sverdrup, 2224 Bay Area Blvd., Houston, TX 77058
Introduction

- CPDS – Charged Particle Directional Spectrometer
- IV instrument is placed inside the USA Laboratory module of the ISS and it was activated on April 21, 2001
- EV instrument is mounted on the S0 truss of the ISS, and was activated in late April 2002
- Instruments are presently taking data which is used for operational radiation dose level indicators
- Instruments are also capable of particle and energy identification
- These data can provide information about the composition of the lower radiation belts, shielding provided by Earth's magnetosphere, and differences in the radiation environments inside and outside the ISS
IV-CPDS
Detector Details

- **A Detectors**
 - Square Si detector, 30.0x30.0mm, 1.0mm thick
 - Top and bottom brass noise shield 5mil (0.127mm) thick

- **PSD Detectors**
 - Square Si strip detector, 24.0x24.0mm, 0.300mm thick
 - 24 strips on top surface and 24 strips on bottom surface, perpendicular to each other

- **B Detectors**
 - Cylindrical Lithium drifted Si detector, 58.4mm in diameter, 5mm thick.

- **C Detector**
 - Sapphire 50mm in diameter, and 10mm thick
 - Hamamatsu PMT
CPDS Collected Data

- **Counter Data**
 - Individual detector count rates for A1, A2, A3, B2, B4, B6 and C.
 - Number of events above detector threshold.
 - Written to file every minute.

- **Event Data (Requires Trigger, A1 A2 coincidence)**
 - ADC value (ΔE) from A, B, and C detectors.
 - ADC value (ΔE) and strip location for up to two events for each PSD detector plane.
 - Written to file every trigger.

- **Engineering Data**
 - Board and detector temperatures, power consumption, etc.
 - Written to file every 30 minutes.
CPDS Capabilities

- Minimum Proton A1 count energy of 20MeV.
- Minimum Proton coincident energy of 30MeV.
- Maximum stopping proton energy of ~95MeV.
- Low energy H and He ion separation (stopping particles).
- Charged particle separation for minimum ionizing particles up to Z=11.
- Energy spectrum for charges with Z<4.
- Proton spectrum up to ~120MeV and Helium up to ~300MeV/n.
Stopping Particles

![Graph showing energy deposited in A2 vs B1 MARIE Detectors.](image)
Protons

Energy Deposited in A2 vs B1 MARIE Detectors from Protons

A2 Deposited Energy (MeV)

B1 Deposited Energy (MeV)

Forward Moving Stopped Protons

Backward Moving Protons

Forward Moving Protons
Relative CNO Abundances Detected by ISS Instruments

- IV
- EV2
- EV3
A1 and A2 thresholds were changed last week. This will increase the number of high energy protons that are triggered on.

- Characterize the trigger threshold
- Data corrections (time stamp)
- ISS instrument comparison
ISS Instruments LET Spectra

Different ISS instrument LET (in water) Spectra for mid-June 2005

Differential Flux (particles/cm² sr s keV/µ)

LET (keV/µ)
Threshold Change

Comparison of Two Threshold Settings

- Current Threshold
- Original Threshold

Counts vs. A1 Channel Number
The analysis of the CPDS instrument data (early 2002-present) has begun.

- The LEO proton spectrum from 30-120MeV will be measured.
- The LEO He spectrum from 50-300MeV/n will be measured.
- Minimum ionizing He-Ne relative abundances will be determined.
- The IV and EV offer the unique simultaneous observations inside and outside the ISS.
Calibration

- Detector calibration done using proton FLUKA simulation and in flight proton data.
- ADC offset determined by B detector pedestals and A detector offset is equal to zero.
- Scaling factors found by overlaying simulated and real data.
Example Calibration
Data Selection

- Cut on time between successive events (required due to CPU limitations in early data).
- Passes χ^2 fit, where $\chi^2 = \frac{1}{n} \sum_{i=0}^{n} (\Delta E^i_c(E, Z, A) - \Delta E^i_m)^2$, and n is the number of detectors that contain a signal.
- The calculated energy loss, $\Delta E^i_c(E, Z, A)$, is from the Bethe-Bloch equation.
- Cut on $E \times \Delta E$ for stopping particles or fitted energy range for penetrating particles.
- Data selection cuts are optimized using a full Monte Carlo simulation.
CPDS Analysis Plan

1. Geometry
2. Source Spectrum (Badhwar-O’Neill)
3. FLUKA
 - Measured Particle Spectra
 - Flux Calculation
4. Reverse Calibration (MeV->ADC)
5. CPDS Algorithm Simulator
6. CPDS Raw Data File
7. CPDS Analysis
8. CPDS Raw Data File
9. CPDS Instrument
10. Particle and Energy ID
11. CPDS Analysis
12. Particle Detection Efficiency
13. Measured Particle Spectra
14. Reverse Calibration (MeV->ADC)
15. Geometry
Test such a simulation algorithm for existing instruments

Useful for design and development of future instruments.
Monte Carlo Simulation

- FLUKA is used to simulate the expected energy losses in each detector.
- The algorithm simulation includes all processes that are done for data acquisition.
- Initial particle spectrum input is from updated Badhwar-O’Neill model (COSPAR 2004).
- Particles of all ions from H through Fe with energies of 10MeV to 10GeV, with relative abundances according to Simpson (1983).
Monte Carlo and Data Comparison

FLUKA MC Simulation Z<15

MARIE 2002-2003 Raw Quiet Time Data
Flux Calculation

Flux is calculated using

\[\phi = \frac{N(E)}{G t \Delta E \, \varepsilon_s \varepsilon_d} \]

- G = Geometry factor (3.2 cm\(^2\) sr for trigger)
- \(\varepsilon_s\) = dead time correction
- \(\varepsilon_s\) = Efficiency from MC
- t = total detection time
- Delta E = energy range
- N(E) = number of particles passing selection requirements