ALTEA

multiple approach program for studying the ionizing radiation effects on the Central Nervous System (CNS)

Livio Narici
Department of Physics, University of Rome and INFN ‘Tor Vergata’, Rome, Italy

narici@roma2.infn.it
…. understanding ..

…. the radiation functional risks for the Central Nervous System during space voyages, with a specific regard to

i) long permanence in space

ii) missions outside the protective Earth magneto-shielding

Cornelius A. Tobias

Radiation Hazards in High Altitude Aviation

“It is conceivable that very densely ionizing tracks would produce small flash-like light sensations”
Background

• Reports from space
 - An unusual flashes of light have been first reported from the Apollo 11 crew (July 1969)
 - Following Apollo flights (12-17, to the Moon)
 - Skylab missions
 - Apollo - Soyuz
 - MIR
 - ISS
 - Shuttle flights

• Ground experiments in the 70’s
• Astronaut Survey (Fuglesang et al.)
Background - 2

Clear findings:
- latitude effect
- heavy ions, high LET as primary source
 ... many open issues

Hardware issues
- solid angle coverage
- single ion - Electrophysiology linking
- visual system monitoring
ALTEA - space: the hardware

- large-solid angle, silicon detector system (SDS), to be positioned around the Astronaut’s head
- EEG system
- visual stimulator unit (VSU)
- Push Button (PB)

NOTE:
all hardware can be used in any combination
ALTEA - space: the protocols

• measure:
 i) the particles passing through the Astronauts’ brain/eyes
 ii) their electrophysiological brain dynamics
 iii) the visual system status
 {protocol CNSM: Central Nervous System Monitoring, 7 - 8 sessions}

• measure the radiation environment in the ISS
 {protocol DOSI: Dosimetry, 12 months of measurements}
ALTEA - space: the SDU

- The large-solid angle, silicon detector system is composed by six Silicon Detector Units (SDU) mounted on an helmet shaped holder (geometrical factor: 1071 cm²/sr)
ALTEA - space: the SDU - 2

- The Silicon Detector Unit (SDU)
 (geometrical factor: 250 cm²/sr)
• The Silicon Detector Unit (SDU) - characteristics:

SDU reads from 4He $>$ 25 MeV/n to 96Mo $>$ 1 GeV/n

Two operational modes:
- Normal
- Full

SDU: Silicon Detector Unit

DETECTORS: 6 double strip silicon layers arranged alternately along X and Y directions
Plane area: $2 \times (6 \times 8)$ cm2
Thickness: 380 µm
Distance X-Y planes: 3.75 cm
Maximum error of angular reconstruction: 1.8°
Geometric Factor (bidirectional): 250 cm2 sr

PERFORMANCES:
Threshold: 3.33 MIP
Saturation: 2400 MIP
(1 MIP = 109 KeV/plane)
ADC: 12 bit

DAU SOFTWARE PARAMETERS:
Resolution: 0.64 MIP/ADC ch
Maximum Acquisition Rate: 700 Hz
Autotrigger (logic OR or logic AND of X planes, software switchable)
ALTEA - space: SDUs tests (at GSI)

- linearity

![Graph showing linearity with MIP (simulation) on the y-axis and ADC channels on the x-axis. The graph includes data points for different materials (C, Ti) and镖s1 MIP = 0.64 ADC ch and R² = 0.9998.](image)
ALTEA - space: SDUs tests at GSI - 2

- nuclear recognition

Ti 600 Mev/n
6 mm Al
• the Bragg curve
ALTEA - space: final acceptance and schedule

• the PTCS at KSC (from March 2005 in the MPLM)

• manifested on the next Shuttle flight
 (STS121 - ULF1.1) \{summer '06\}
ALTEA - space: accepted protocols

• DOSI
 - SDS tilted to minimize protrusion
 - Running throughout the increment(s)
 - Real Time data Downlink
 - Real Time partial analysis on ground
- The astronaut wears the EEG cap..
- .. slides into the SDS..
- .. close the VSU and start dark adaptation
- The assistant starts the automatic procedure:
 SDS always ‘on’
 EEG always ‘on’
 VSU (at the beginning) delivers the stimulation paradigm
 The astronaut signal the LF perception with the PB
ALTEA - space: data transfer

• **DOSI:** Real Time data downlink
 - maximum rate \(\approx 0.64 \text{ Mbps} \)
 - (corresponding to \(\approx 600 \text{ Hz} \) in *normal* mode)
 - average foreseen rate \(\approx 60 \text{ kbps} \)

• **CNSM:** Storaged on Lap Top HD, downlinked Off Line
 - \(\approx 1.5 - 2 \text{ GB/session} \)
The data downlink route

- **White Sand Complex**
- **JSC**
- **MSFC**
- **ISS**
- **DomSat**
- **DOI**
- **Univ. of Rome Tor Vergata User Home Base**
- **TPC**
- **Net Control Center Telespazio Fucino**
- **ASI-USOC User Support Operations Center**

Networks and Relays

- TDRSS
- Tracking and Data Relay Satellites System
- KuBand
- S band over IONet
- VPN over Internet
• The User Home Base

Data is going to be easily available for the scientific community
ALTEA - space: Real Time Analysis

- Real time trace display

- Software for real time trace recognition is under development
ALTEA - space: interactive data display

- Software for the visualization of Particle and EEG data
The scientific strategy: follow up

- extend measurement validity on other vessels & outside magnetosphere
- propose shielding material(s) to minimize risks
- test on ground and in space such shielding material(s)

ALTEA - shield (ESA)

2 increments after ALTEA - space
ALTEA - shield

- working hypothesis:

3D survey detectors

- to be started in incr. 15?
 (spring 2007)

“shield” configuration
The scientific strategy: follow up 2

• ALTEA - 2 is in the process of being designed
The ALTEA team

Dept. di Physics, Univ. of Rome "Tor Vergata" and INFN Sect. Roma2, Roma
Italian Space Agency (ASI) - Rome
Dept of Physics, Univ. of Pavia, Pavia
Dept of Physics, Univ. of Milan, Milan
DISM-Univ. of Genoa, Genoa
L.N.F. - INFN, Frascati (Rome)
ALENIA spazio - Laben
CERN - INFN
Dept. of Physics, Univ. e Sect. INFN of Trieste, Perugia, Firenze
Dept. of Sc. and Chemical Tec., Univ. of Rome "Tor Vergata"
Dept. of STB - Univ. of L'Aquila, L'Aquila
GSI - Biophysik, Darmstadt, Germany
Royal Institute of Technology, Stockholm, Sweden
Chalmers University of Technology, Sweden

Institute for BioMedical Problems, Moscow, Russia.
Russian Space Corporation "Energia" by name Korolev, Korolev, Moscow region, Russia
Moscow State Engineering Physics Institute, Moscow, Russia

Altamura F
Avdeev S.
Ball S.
Ballarini F.
Battistoni G.
Belli F.
Bencardino R.
Bengin V.
Benton E.
Bidoli V.
Bisti S.
Boezio M.
Bonvicini W.
Carlson P.
Carozzo S.
Casolino M.
Castellini G.
Cotronei V.
Cucinotta F.
De Martino A.
DePascale M.P.
Di Fino L.
Ferrari A.
Fuglesang C.
Furano G.
Galper A.
Gianelli G.
Khodarovich A.
Korotkov M.G.
Iwase H.
Licoccia S.
Maccarone R.
Mazzenga G.
Miller J.
Morino V.
Morselli A.
Narici L.
Negri B.
Ottolenghi A.
Paci M.
Peachey N.S.
Petrov V.P.
Picozza P.
Popov A.
Reali E.
Ricci M.
Rinaldi A.
Romagnoli P.
Ruggieri D.
Salnitski V.P.
Sannita W.G.
Sato T.
Schardt D.
Shavers M.
Shevchenko O.I.
Shurshakov V.A
Siilver L.
Sparvoli R.
Spillantini P.
Trukhanov K.A.
Vacchi A.
Vavilov N.
Vazquez M.
Villari S.
Vittori R.
Zaconte V.
Zampa N.

+ others joining in

Radiation Detection and Dosimetry Workshop - Houston, Tx April 6 - 7, 2006
Thank you for your attention
ALTEA - space: EEG VSU and PB

EEG
32 channels
128 - 16384 Hz per channel

PushB.
Three independent pushbuttons

VSU
Two color LCD-TFT oculars
XGA, 1024 x 768 pixels at 60 Hz
Field of view: 35° diagonal (21° V 28° H)
Luminance 5-50 FL Contrast 40:1
256 colors out of a 16 million colors palette
Video memory: 2 MB
ALTEA - space: the EEG

- EEG cap and electrodes
ALTEA - space: the Visual Stimulator

- visual stimuli

Astronaut Jeff Williams during BDC
ALTEA - space: the Push Button

- three independent buttons
ALTEA - space: BDC

- protocol

 - the same protocol that will be performed in space:
 - Contrast gratings
 12 combination of
 spatial freqency and contrast
 - Flashes
 press the pushbutton at the rare event (Low Right Flash)

- BDC already performed:
 - Bill McArthur (complete)
 - Jeff Williams (complete)
 - Sunita Williams (partial)
 - Clay Anderson (partial)
ALTEA - space: BDC - 2

• results: Reaction Time

Results in the MIR station

Reaction time (s) for 5 astronauts:
- 0.42 ± 0.10
- 0.42 ± 0.08
- 0.43 ± 0.10
- 0.37 ± 0.05
- 0.39 ± 0.07